• 最新公告
  • 联系我们
  • 地址:北京市三环某某楼2201室
  • 电话:18911603110
  • 传真:010-68888888
  • 邮编:471000
  • 当前所在位置:首页 - 学龄前教育
  • 当你和孩子“闲聊”也就了孩子的数学思维启蒙
  •   数学被认为是“学科”使人。但在长期研究儿童大脑及思维培养的夏骏轶老师看来,想要学到数学知识技能的同时,建立起良性的数学价值观,就必须用人文视角重新审视数学启蒙教育。那么到底如何和孩子探讨数学问题?家长又如何帮助孩子发现数学问题的根源?其实,就是两个字“闲聊”。具体如何做,一起来听听夏骏轶 老师的。

      文章发表后,有很多家长给我反馈,说这三个观点,提出来容易,要真正做好做实,挺困难的。就拿第一个观点来讲,就有家长觉得,和孩子解释数学,往往讲不清、讲不透,很难真正发掘到数学的根源问题,这该如何是好?

      比如有这样的题目:9+7=?,家长看到这样的问题,往往直觉的反应是:“哦,这是一道题!所以,我应该教给孩子怎么解答这个问题,先引导孩子观察一下问题是什么,条件是什么,然后第一步怎么考虑,第二步怎么考虑,最后应该怎么考虑……”

      但当我们把构想中和孩子的交流方案付诸实施的时候,往往会发现说好的数学探讨变成了一次次的泥石流尬聊,或者一场场的车祸现场,家长心里想着:“这么容易你还不知道!”孩子心里想着:“摔啊!这哪里容易啦?!

      那么到底如何和孩子探讨数学问题?家长又如何帮助孩子发现数学问题的根源?相信每一位智慧的父母都有自己智慧的方法,而我在这里给大家的第一条就是:

      因为,从家长的角度来看,往往认为,一个数学问题,就是一个程序性解法,规划适当的步骤,输入数据,就能得出结果。这是教的视角,或者仅仅是解决当下问题的视角。

      但是从学的视角来看,或者说从孩子角度来看,他们并没有的注意力切换能力和短时记忆能力,也没有的结构化思维,他们的结构化思维正在建立之中,他们需要的是有条不紊建立数学关系和知识组块,所以他们在面对一个问题时,更倾向于去搞清楚与这个问题相关的各种情况,而不是快速得到一个结论。

      所以和孩子交流数学问题时,往往会陷入线性逻辑思维和发散思维的对抗,而小朋友的思维好像铀235,给他一个中子,立刻链式反应,你追也追不回来。

      奇普•希思在《黏性》这本书中提到一个观念,叫“知识的”,意思是说“一旦我们知道某样东西,我们就会发现很难想象不知道它是什么样子。别人分享我们的知识变得很困难,因为我们不易重造我们听众的,除非我们能够灵活的进行范式转换。”

      这种情况我把它称为“知识结构化的壁垒”:墙内墙外两重天,新手老手两种人,专家不知道新手苦,话不投机半句多。而在数学这样逻辑刚性结构很强的学科中,体现的尤为明显。

      首先,我们需要认识到,同样一个数学问题,本身可以有两种不同的用途,一是学习资源,二是测试工具。作为学习资源的数学问题,作用是帮助孩子整合零散的数学认识,作为测试工具的数学问题,作用是发现孩子在数学认知上的漏洞。

      所以,如果我们在和孩子讨论数学问题时,发现孩子不太明白,首先要放下自己的线性逻辑,接纳孩子发散、碎片和幼稚的思维。并且高兴的宣布:“太好了,我找到了一个孩子认知上的薄弱点!”

      然后,我们需要做的,是继续提问和交流,但这时我们焦点不应该纠缠问题本身,而是要试着通过交流把问题拆解,找到孩子真正认知薄弱的核心。比如这个案例,表面上,孩子对20以内进位加法不理解,但实质上到底是哪个环节出了问题?我们需要继续和孩子交流下去。

      发现孩子的计数水平停留在点数上,还没有理解数群计数,也就是还不会把一个数放在心里,继续数下去,直至得出总数。

      大家发现没有,这样的交流,我们把目标从“孩子明白当下问题”转移到了“了解孩子到底哪里有知识的薄弱点”上,这样我们就比较容易找到问题症结,再进行具体的指导,就比我们就事论事,或者一味强调某些套方法(比如破十法,凑十法)要有效和扎实的多。

      或许家长会觉得,这样做比较花费精力,而且家长对儿童数学启蒙的认识也不够,可能做不得到有效的诊断分析。但是我要说,如果我们想要孩子能够真正把数学思维启蒙学扎实,这些功夫是需要扎扎实实做好的。

      而且就儿童数学启蒙阶段的实际情况来说,认知的核心部分还是相对有限的,大家如果能够尽可能的在有效的认知结构下,扎扎实实把孩子的思维启蒙教育做好,那么前难后易,对孩子的一生都会有很大的助益。

      此外,关于儿童数学启蒙,是有其核心概念的,这些核心概念诠释了孩子在理解学习数学过程中,最内核最基础的认知要点,我花了一点时间制作了这张儿童数学核心经验图表,在这里提供给各位家长,大家可以按图索骥,来发现孩子的认知薄弱环节,希望能够帮到大家。当然,我们也可以去咨询有经验的数学思维教师,这样理解起来会更有针对性,也更清晰。

      回过头来,之前我们所谈的,通过与孩子交流数学看法,分析孩子数学认知程度,从而发现孩子数学的根源问题,提升孩子的数学思维能力。这样的方法,在一定范围内,其实依旧是就事论事的学习方法,依旧是微观上的,解决具体问题的方法。

      我们能够帮助孩子发现一个问题两个问题,但是总有更多的问题,我们没有办法手把手的帮孩子找到所有的问题,如果我们给孩子进行的数学思维启蒙,都是运用这样的方法,最后的结果就是挂一漏万。对孩子的数学素养培养,数学洞察能力的提升,数学智慧的发展,作用不大。

      授人予鱼不如授人与渔,有没有一种方法可以从更宏观的角度,帮助孩子提升数学思维能力呢?的确有!

      如果大家回想我们自己的学习之,会发现一个现象:我们往往接受一种学习观点,就是通过累积基础知识,量变引起质变,然后再学更难的知识,好像升级打怪兽一样。

      但是实际上,我们在学习具体的基础知识时,会遇到很多认识上的障碍,这些障碍在某一个阶段怎么都越不过去。而这种情况,在我们到达下一个学习阶段的时候,会突然峰回转,之前困扰我们的障碍都不再称之为障碍了。

      举一个很简单的例子,我们在小学阶段学习不同类型的应用题,各种,各种,但是进入初中,学习了方程,顿时发现,之前的问题原来如此简单。所以就有同学说:什么应用题,早点教方程不好吗?这话虽然不全对,但是有一定的正确性。

      说明了什么呢?说到底,其实就是我们常说的高屋建瓴。用高概念去指导低概念知识的获得事半功倍,上位概念越坚厚,下位概念获取更容易——飞机打坦克容易,坦克困难。

      F.克莱因在《高观点下的初等数学》一书中讲到:“应使学生了解数学并不是孤立的各门学问,而是一个有机的整体,应该站在更高的视角(高等数学)来审视、理解初等数学问题,只有观点高了,事物才能显得明了而简单。”这段话虽然是在讲教师责任,但对孩子的数学学习也有很强的参考价值。

      不知道大家有没有发现,前面那一张儿童数学核心经验的图表,其中所列举的,都是属于数学概念层面的内容,这其实恰恰符合了数学学习的规律——概念的理解要高于基本知识。

      但是对于数学素养的培养、数学洞察能力的提升而言,光有核心概念的理解还是不够的,我们更需要往更深层去发掘一些元概念——儿童的哲学观念。

      钱学森教授曾经把人类科学知识分为六个组成部分,即哲学、自然科学、社会科学、数学、技术科学和系统工程六个门类,而概括一切的是哲学。而数学从其逻辑特性,也是起源于哲学。

      现在对未来人才知识结构的分析形成的基本观点是:基础知识形成学科核心概念,学科核心概念横向形成跨学科主题,而在的顶端由哲学观点进行统领。这样的知识结构有利于培育创新性人才。再加之刚才所阐述的:高概念指导低概念知识的学习,哲学性思维作为儿童数学思维启蒙的元概念,是合乎逻辑的选择。

      那么,大家或许会有疑问:哲学是一门非常高深的学问,孩子在启蒙的时候,真的要和他们讲这些“大道理”吗?

      其实,我们在进行儿童数学思维启蒙时和孩子交流的那些哲学观念,并不是康德、黑格尔那些高深的哲学思想,马修斯在《哲学与幼童》一书中谈到过这个问题,他认为:

      儿童在各个领域所获得的知识具有理论的基本性质,正式的直觉“理论”。在婴儿期,这些理论非常简单,以后理论逐渐变得复杂。幼儿可能只有一些理论,而年长一点的儿童则可能拥有各种不同领域的理论。这些理论是解释性的,能够回答“为什么”的问题。在心理学研究中,通常称为“儿童的朴素理论”

      其实,就其本质而言,就是“儿童的哲学”,是儿童对万象、对人生百态、对多彩文化的解释,都是通向一些最根本的哲学问题的。

      比如有的时候我们会在早餐的时候催促孩子动作快点,因为动作慢上幼儿园就会迟到,从这个现象出发,就有可能引发一些带有哲学意味的讨论。

      马修斯在他的书中记载了这样的情况:“詹姆斯的母亲抱怨人们制定出“早起”这样东西,让人不得不遵守”,6岁的丹尼斯则慢悠悠的地说:“早和迟都不是东西,他们不像桌子、椅子和杯子一类——你能摸到的东西!”

      吃过晚饭,家里人围坐在一起聊天,忽然爸爸提出这个一个问题:“自行车是否就是少了一个轮子的三轮车?”然后,这样的讨论就一发不可,孩子们纷纷效仿:

      所以,我们可以发现,孩子在早期认识世界的时候,通过知识的学习会产生一些基本的哲学观点,对于这些朴素的哲学观点的讨论和交流,会推动孩子进行更深一步的探索和思考,而它的形式其实和闲聊并没有太大的差别,因此我们的家长常常会忽视这些现象,这其实常可惜的。

      如果我们能够认识到这些问题对孩子思维启蒙的意义,对孩子数学学习的基础价值,那么我们就能够把握住这些在家庭生活中闪光的智慧火花,能在闲聊中,一次又一次的完成对孩子的思维训练,同时也在欢笑中收获数学思维的洞察力。

      最后我想说,归根结底,数学思维的培养是孩子的启蒙,如果我们想要找寻什么秘诀的话,秘诀就是更了解孩子。多观察、多交流、多闲聊,帮助孩子从生活中、游戏中、自然经验中发现中发现抽象而精确的数学,比任何“教育秘籍”都要来得有效。

      本文来源于ipfs